Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.608
Filtrar
1.
Cell ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38565142

RESUMO

Taurine is used to bolster immunity, but its effects on antitumor immunity are unclear. Here, we report that cancer-related taurine consumption causes T cell exhaustion and tumor progression. The taurine transporter SLC6A6 is correlated with aggressiveness and poor outcomes in multiple cancers. SLC6A6-mediated taurine uptake promotes the malignant behaviors of tumor cells but also increases the survival and effector function of CD8+ T cells. Tumor cells outcompete CD8+ T cells for taurine by overexpressing SLC6A6, which induces T cell death and malfunction, thereby fueling tumor progression. Mechanistically, taurine deficiency in CD8+ T cells increases ER stress, promoting ATF4 transcription in a PERK-JAK1-STAT3 signaling-dependent manner. Increased ATF4 transactivates multiple immune checkpoint genes and induces T cell exhaustion. In gastric cancer, we identify a chemotherapy-induced SP1-SLC6A6 regulatory axis. Our findings suggest that tumoral-SLC6A6-mediated taurine deficiency promotes immune evasion and that taurine supplementation reinvigorates exhausted CD8+ T cells and increases the efficacy of cancer therapies.

2.
Water Res ; 256: 121641, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38643643

RESUMO

Extracellular polymeric substances (EPS) play significant roles in the formation, function, and interactions of microalgal-bacteria consortia. Understanding the key roles of EPS depends on reliable extraction and quantification methods, but differentiating of EPS from microalgae versus bacteria is challenging. In this work, cation exchange resin (CER) and thermal treatments were applied for total EPS extraction from microalgal-bacteria mixed culture (MBMC), flow cytometry combined with SYTOX Green staining was applied to evaluate cell disruption during EPS extraction, and auto-fluorescence-based cell sorting (AFCS) was used to separate microalgae and bacteria in the MBMC. Thermal extraction achieved much higher EPS yield than CER, but higher temperature and longer time reduced cell activity and disrupted the cells. The highest EPS yield with minimal loss of cell activity and cell disruption was achieved using thermal extraction at 55℃ for 30 min, and this protocol gave good results for MBMC with different microalgae:bacteria (M:B) mass ratios. AFCS combined with thermal treatment achieved the most-efficient biomass differentiation and low EPS loss (<4.5 %) for the entire range of M:B ratios. EPS concentrations in bacteria were larger than in microalgae: 42.8 ± 0.4 mg COD/g TSS versus 9.19 ± 0.38 mg COD/g TSS. These findings document sensitive and accurate methods to extract and quantify EPS from microalgal-bacteria aggregates.

3.
PLoS One ; 19(4): e0301927, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635748

RESUMO

Generally, UHS-ECC should consume massive cement, which is negative to its sustainability as cement production leads to 8% of global CO2 emissions. To decrease the cost of production and carbon emissions of UHS-ECC, rice husk ash was employed to replace the cement as a supplementary cementitious material in this study. Experiment results illustrate that blending rice husk ash (RHA) would decrease the fluidity of mortar. Furthermore, the green UHS-ECC shows a maximum compressive strength of 130.3 MPa at 28 days when RHA content was 20% of cement. The ultimate tensile strength of UHS-ECCs first increased and then decreased, while both tensile strain and strain energy presented an opposite tendency. At the micro-scale, if RHA content was lower than 20% of cement, incorporating RHA can significantly decreasing fiber bridging complementary energy of UHS-ECC, thus reducing pseudo strain hardening energy (PSHenergy) index, which finely agrees with the degradation of ductility of UHS-ECCs. To guarantee the features of ultra-high strength, acceptable workability, and high tensile ductility, the RHA dosage should not be in excess 20% of cement. These researched results are prospected to the contribution of pozzolanic RHA on the efficient usage of sustainable UHS-ECC.


Assuntos
Oryza , Cimentos Ósseos , Carbono , Força Compressiva , Cimentos de Ionômeros de Vidro
4.
J Gynecol Oncol ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38606822

RESUMO

OBJECTIVE: QL1604 is a highly selective, humanized monoclonal antibody against programmed death protein 1. We assessed the efficacy and safety of QL1604 plus chemotherapy as first-line treatment in patients with advanced cervical cancer. METHODS: This was a multicenter, open-label, single-arm, phase II study. Patients with advanced cervical cancer and not previously treated with systemic chemotherapy were enrolled to receive QL1604 plus paclitaxel and cisplatin/carboplatin on day 1 of each 21-day cycle for up to 6 cycles, followed by QL1604 maintenance treatment. RESULTS: Forty-six patients were enrolled and the median follow-up duration was 16.5 months. An 84.8% of patients had recurrent disease and 13.0% had stage IVB disease. The objective response rate (ORR) per Response Evaluation Criteria in Advanced Solid Tumors (RECIST) v1.1 was 58.7% (27/46). The immune ORR per immune RECIST was 60.9% (28/46). The median duration of response was 9.6 months (95% confidence interval [CI]=5.5-not estimable). The median progression-free survival was 8.1 months (95% CI=5.7-14.0). Forty-five (97.8%) patients experienced treatment-related adverse events (TRAEs). The most common grade≥3 TRAEs (>30%) were neutrophil count decrease (50.0%), anemia (32.6%), and white blood cell count decrease (30.4%). CONCLUSION: QL1604 plus paclitaxel-cisplatin/carboplatin showed promising antitumor activity and manageable safety profile as first-line treatment in patients with advanced cervical cancer. Programmed cell death protein 1 inhibitor plus chemotherapy may be a potential treatment option for the patient population who have contraindications or can't tolerate bevacizumab, which needs to be further verified in phase III confirmatory study. Trial RegistrationClinicalTrials.gov Identifier: NCT04864782.

5.
J Affect Disord ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38657771

RESUMO

BACKGROUND: Depression is a chronic psychiatric disorder related to diminished dopaminergic neurotransmission. Deep brain stimulation (DBS) has shown effectiveness in treating patients with treatment-refractory depression (TRD). This study aimed to evaluate the effect of DBS on dopamine D2 receptor binding in patients with TRD. METHODS: Six patients with TRD were treated with bed nucleus of the stria terminalis (BNST)-nucleus accumbens (NAc) DBS were recruited. Ultra-high sensitivity [11C]raclopride dynamic total-body positron emission tomography (PET) imaging was used to assess the brain D2 receptor binding. Each patient underwent a [11C]raclopride PET scan for 60-min under DBS OFF and DBS ON, respectively. A simplified reference tissue model was used to generate parametric images of binding potential (BPND) with the cerebellum as reference tissue. RESULTS: Depression and anxiety symptoms improved after 3-6 months of DBS treatment. Compared with two-day-nonstimulated conditions, one-day BNST-NAc DBS decreased [11C]raclopride BPND in the amygdala (15.9 %, p < 0.01), caudate nucleus (15.4 %, p < 0.0001) and substantia nigra (10.8 %, p < 0.01). LIMITATIONS: This study was limited to the small sample size and lack of a healthy control group. CONCLUSIONS: Chronic BNST-NAc DBS improved depression and anxiety symptoms, and short-term stimulation decreased D2 receptor binding in the amygdala, caudate nucleus, and substantia nigra. The findings suggest that DBS relieves depression and anxiety symptoms possibly by regulating the dopaminergic system.

6.
Plant J ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659310

RESUMO

The Q transcription factor plays important roles in improving multiple wheat domestication traits such as spike architecture, threshability and rachis fragility. However, whether and how it regulates abiotic stress adaptation remain unclear. We found that the transcriptional expression of Q can be induced by NaCl and abscisic acid treatments. Using the q mutants generated by CRISPR/Cas9 and Q overexpression transgenic lines, we showed that the domesticated Q gene causes a penalty in wheat salt tolerance. Then, we demonstrated that Q directly represses the transcription of TaSOS1-3B and reactive oxygen species (ROS) scavenging genes to regulate Na+ and ROS homeostasis in wheat. Furthermore, we showed that wheat salt tolerance protein TaWD40 interacts with Q to competitively interfere with the interaction between Q and the transcriptional co-repressor TaTPL. Taken together, our findings reveal that Q directly represses the expression of TaSOS1 and some ROS scavenging genes, thus causing a harmful effect on wheat salt tolerance.

7.
Eur J Med Chem ; 271: 116435, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38648728

RESUMO

Multiple myeloma (MM), a cancer of plasma cells, is the second most common hematological malignancy which is characterized by aberrant plasma cells infiltration in the bone marrow and complex heterogeneous cytogenetic abnormalities. Over the past two decades, novel treatment strategies such as proteasome inhibitors, immunomodulators, and monoclonal antibodies have significantly improved the relative survival rate of MM patients. However, the development of drug resistance results in the majority of MM patients suffering from relapse, limited treatment options and uncontrolled disease progression after relapse. There are urgent needs to develop and explore novel MM treatment strategies to overcome drug resistance and improve efficacy. Here, we review the recent small molecule therapeutic strategies for MM, and introduce potential new targets and corresponding modulators in detail. In addition, this paper also summarizes the progress of multi-target inhibitor therapy and protein degradation technology in the treatment of MM.

8.
MedComm (2020) ; 5(4): e537, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38617434

RESUMO

Platinum resistance represents a major barrier to the survival of patients with ovarian cancer (OC). Cdc2-like kinase 2 (CLK2) is a major protein kinase associated with oncogenic phenotype and development in some solid tumors. However, the exact role and underlying mechanism of CLK2 in the progression of OC is currently unknown. Using microarray gene expression profiling and immunostaining on OC tissues, we found that CLK2 was upregulated in OC tissues and was associated with a short platinum-free interval in patients. Functional assays showed that CLK2 protected OC cells from platinum-induced apoptosis and allowed tumor xenografts to be more resistant to platinum. Mechanistically, CLK2 phosphorylated breast cancer gene 1 (BRCA1) at serine 1423 (Ser1423) to enhance DNA damage repair, resulting in platinum resistance in OC cells. Meanwhile, in OC cells treated with platinum, p38 stabilized CLK2 protein through phosphorylating at threonine 343 of CLK2. Consequently, the combination of CLK2 and poly ADP-ribose polymerase inhibitors achieved synergistic lethal effect to overcome platinum resistance in patient-derived xenografts, especially those with wild-type BRCA1. These findings provide evidence for a potential strategy to overcome platinum resistance in OC patients by targeting CLK2.

9.
Urol Case Rep ; 53: 102699, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38495853

RESUMO

Langerhans cell histiocytosis (LCH) can manifest in any organ or system, but the occurrence of cutaneous lesions on the penis, causing urethral stenosis, is particularly uncommon. The diagnosis primarily relies on typical clinical manifestations and pathological examination. Treatment involves the excision of local lesions combined with chemotherapy, with a generally favorable prognosis. A 3-year-old male patient experienced voiding difficulties after circumcision, revealing penile skin lesions upon examination. Postoperative pathological analysis and immunohistochemistry confirmed the diagnosis of LCH. Langerhans cell histiocytosis can present as cutaneous lesions on the penis, leading to symptoms of urinary tract obstruction.

10.
J Hazard Mater ; 469: 133997, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38508115

RESUMO

Maternal exposure to glucocorticoids has been associated with adverse outcomes in offspring. However, the consequences and mechanisms of gestational exposure to prednisone on susceptibility to osteoporosis in the offspring remain unclear. Here, we found that gestational prednisone exposure enhanced susceptibility to osteoporosis in adult mouse offspring. In a further exploration of myogenic mechanisms, results showed that gestational prednisone exposure down-regulated FNDC5/irisin protein expression and activation of OPTN-dependent mitophagy in skeletal muscle of adult offspring. Additional experiments elucidated that activated mitophagy significantly inhibited the expression of FNDC5/irisin in skeletal muscle cells. Likewise, we observed delayed fetal bone development, downregulated FNDC5/irisin expression, and activated mitophagy in fetal skeletal muscle upon gestational prednisone exposure. In addition, an elevated total m6A level was observed in fetal skeletal muscle after gestational prednisone exposure. Finally, gestational supplementation with S-adenosylhomocysteine (SAH), an inhibitor of m6A activity, attenuated mitophagy and restored FNDC5/irisin expression in fetal skeletal muscle, which in turn reversed fetal bone development. Overall, these data indicate that gestational prednisone exposure increases m6A modification, activates mitophagy, and decreases FNDC5/irisin expression in skeletal muscle, thus elevating osteoporosis susceptibility in adult offspring. Our results provide a new perspective on the earlier prevention and treatment of fetal-derived osteoporosis.


Assuntos
Fibronectinas , Osteoporose , Humanos , Camundongos , Feminino , Animais , Gravidez , Prednisona/metabolismo , Fibronectinas/metabolismo , Exposição Materna , Mitofagia , Músculo Esquelético/metabolismo , Fatores de Transcrição/metabolismo , Osteoporose/induzido quimicamente
11.
Plant Commun ; : 100856, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431772

RESUMO

Actinidia arguta, the most widely distributed Actinidia species and the second cultivated species in the genus, can be distinguished from the currently cultivated Actinidia chinensis on the basis of its small and smooth fruit, rapid softening, and excellent cold tolerance. Adaptive evolution of tetraploid Actinidia species and the genetic basis of their important agronomic traits are still unclear. Here, we generated a chromosome-scale genome assembly of an autotetraploid male A. arguta accession. The genome assembly was 2.77 Gb in length with a contig N50 of 9.97 Mb and was anchored onto 116 pseudo-chromosomes. Resequencing and clustering of 101 geographically representative accessions showed that they could be divided into two geographic groups, Southern and Northern, which first diverged 12.9 million years ago. A. arguta underwent two prominent expansions and one demographic bottleneck from the mid-Pleistocene climate transition to the late Pleistocene. Population genomics studies using paleoclimate data enabled us to discern the evolution of the species' adaptation to different historical environments. Three genes (AaCEL1, AaPME1, and AaDOF1) related to flesh softening were identified by multi-omics analysis, and their ability to accelerate flesh softening was verified through transient expression assays. A set of genes that characteristically regulate sexual dimorphism located on the sex chromosome (Chr3) or autosomal chromosomes showed biased expression during stamen or carpel development. This chromosome-level assembly of the autotetraploid A. arguta genome and the genes related to important agronomic traits will facilitate future functional genomics research and improvement of A. arguta.

12.
Antiviral Res ; 225: 105872, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556058

RESUMO

The antiviral activity of interferon gamma (IFNγ) against hepatitis B virus (HBV) was demonstrated both in vivo and in vitro in a previous study. IFNγ can suppress HBV replication by accelerating the decay of replication-competent nucleocapsids of HBV. However, in this study, we found that the direct application of the mouse IFNγ (mIFNγ) expression plasmid to the liver of an HBV hydrodynamic injection (HI) mouse model led to the persistence of HBV, as indicated by sustained HBsAg and HBeAg levels in the serum as well as an increased percentage of the HBsAg positive mice, whereas the level of HBV DNA in the serum and the expression of HBcAg in the liver were inhibited at the early stage after HI. Meanwhile, we found that the productions of both HBcAb and HBsAb were suppressed after the application of mIFNγ. In addition, we found that HBV could be effectively inhibited in mice immunized with HBsAg expression plasmid before the application of mIFNγ. Furthermore, mIFNγ showed antiviral effect and promoted the production of HBsAb when the mice subjected to the core-null HBV plasmid. These results indicate that the application of mIFNγ in the HBV HI mouse model, the mice showed defective HBcAg-specific immunity that impeded the production of HBcAb and HBsAb, finally allowing the persistence of the virus. Moreover, IFNγ-induced negative immune regulatory factors also play an important role in virus persistence.


Assuntos
Vírus da Hepatite B , Hepatite B , Animais , Camundongos , Interferon gama/metabolismo , Antígenos do Núcleo do Vírus da Hepatite B/genética , Antígenos de Superfície da Hepatite B , Fígado , Anticorpos Anti-Hepatite B , Antivirais/farmacologia , Replicação Viral
13.
MycoKeys ; 102: 245-266, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463694

RESUMO

Ophiocordyceps is the largest genus in Ophiocordycipitaceae and has a broad distribution with high diversity in subtropical and tropical regions. In this study, two new species, pathogenic on lepidopteran larvae are introduced, based on morphological observation and molecular phylogeny. Ophiocordycepsfenggangensissp. nov. is characterised by having fibrous, stalked stroma with a sterile tip, immersed perithecia, cylindrical asci and filiform ascospores disarticulating into secondary spores. Ophiocordycepsliangiisp. nov. has the characteristics of fibrous, brown, stipitate, filiform stroma, superficial perithecia, cylindrical asci and cylindrical-filiform, non-disarticulating ascospores. A new combination Ophiocordycepsmusicaudata (syn. Cordycepsmusicaudata) is established employing molecular analysis and morphological characteristics. Ophiocordycepsmusicaudata is characterised by wiry, stipitate, solitary, paired to multiple stromata, yellowish, branched fertile part, brown stipe, immersed perithecia, cylindrical asci and cylindrical-filiform, non-disarticulating ascospores.

14.
J Med Chem ; 67(6): 4346-4375, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38484122

RESUMO

Over the past decades, the role of rearranged during transfection (RET) alterations in tumorigenesis has been firmly established. RET kinase inhibition is an essential therapeutic target in patients with RET-altered cancers. In clinical practice, initial efficacy can be achieved in patients through the utilization of multikinase inhibitors (MKIs) with RET inhibitory activity. However, the effectiveness of these MKIs is impeded by the adverse events associated with off-target effects. Recently, many RET-selective inhibitors, characterized by heightened specificity and potency, have been developed, representing a substantial breakthrough in the field of RET precision oncology. This Perspective focuses on the contemporary understanding of RET mutations, recent advancements in next-generation RET inhibitors, and the challenges associated with resistance to RET inhibitors. It provides valuable insights for the development of next-generation MKIs and selective RET inhibitors.


Assuntos
Neoplasias Pulmonares , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas Proto-Oncogênicas c-ret/genética , Medicina de Precisão , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação , Neoplasias Pulmonares/tratamento farmacológico
15.
Front Immunol ; 15: 1338922, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426100

RESUMO

This review explores the mechanisms of chronic radiation-induced skin injury fibrosis, focusing on the transition from acute radiation damage to a chronic fibrotic state. It reviewed the cellular and molecular responses of the skin to radiation, highlighting the role of myofibroblasts and the significant impact of Transforming Growth Factor-beta (TGF-ß) in promoting fibroblast-to-myofibroblast transformation. The review delves into the epigenetic regulation of fibrotic gene expression, the contribution of extracellular matrix proteins to the fibrotic microenvironment, and the regulation of the immune system in the context of fibrosis. Additionally, it discusses the potential of biomaterials and artificial intelligence in medical research to advance the understanding and treatment of radiation-induced skin fibrosis, suggesting future directions involving bioinformatics and personalized therapeutic strategies to enhance patient quality of life.


Assuntos
Inteligência Artificial , Lesões por Radiação , Humanos , Epigênese Genética , Qualidade de Vida , Fibrose , Fator de Crescimento Transformador beta/metabolismo , Lesões por Radiação/genética
16.
J Immunother Cancer ; 12(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429070

RESUMO

BACKGROUND: The effectiveness of immune checkpoint inhibitors in colorectal cancer (CRC) is limited due to the low tumor neoantigen load and low immune infiltration in most microsatellite-stable (MSS) tumors. This study aimed to develop a mitochondria-targeted photodynamic therapy (PDT) approach to provoke host antitumor immunity of MSS-CRC and elucidate the underlying molecular mechanisms. METHODS: The role and mechanism of mitochondria-targeted PDT in inhibiting CRC progression and inducing pyroptosis were evaluated both in vitro and in vivo. The immune effects of PDT sensitization on PD-1 blockade were also assessed in CT26 and 4T1 tumor-bearing mouse models. RESULTS: Here, we report that PDT using IR700DX-6T, a photosensitizer targeting the mitochondrial translocation protein, may trigger an antitumor immune response initiated by pyroptosis in CRC. Mechanistically, IR700DX-6T-PDT produced reactive oxygen species on light irradiation and promoted downstream p38 phosphorylation and active caspase3 (CASP3)-mediated cleavage of gasdermin E (GSDME), subsequently inducing pyroptosis. Furthermore, IR700DX-6T-PDT enhanced the sensitivity of MSS-CRC cells to PD-1 blockade. Decitabine, a demethylation drug used to treat hematologic neoplasms, disrupted the abnormal methylation pattern of GSDME in tumor cells, enhanced the efficacy of IR700DX-6T-PDT, and elicited a potent antitumor immune response in combination with PD-1 blockade and IR700DX-6T-PDT. CONCLUSION: Our work provides clear a understanding of immunogenic cell death triggered by mitochondria-targeted PDT, offering a new approach for enhancing the efficacy of PD-1 blockade in CRC.


Assuntos
Neoplasias Colorretais , Fotoquimioterapia , Animais , Camundongos , Linhagem Celular Tumoral , Neoplasias Colorretais/terapia , Imunoterapia , Mitocôndrias/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Piroptose , Gasderminas/efeitos dos fármacos , Gasderminas/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico
17.
Huan Jing Ke Xue ; 45(3): 1674-1683, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471879

RESUMO

Carbon, nitrogen, phosphorus, and potassium in the soil are the necessary nutrient elements for plant growth, and their contents and ecological stoichiometry can reflect the status of soil quality and nutrient limitation. The Huayuankou Yellow River Floating Bridge Wetland in the lower Yellow River was selected as the research object. The methods of ANOVA, redundancy analysis, and linear regression fitting were used to study the contents of organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), total potassium (TK), alkaline nitrogen (AN), available phosphorus (AP), available potassium (AK), and their ecological stoichiometric ratios as well as the limiting elements of soil nutrients, and the key physicochemical properties that affect soil nutrients and their ecological stoichiometry in the wetland were revealed. The results showed that the mean values of ω(SOC), ω(TN), ω(TP), ω(TK), ω(AN), ω(AP), and ω(AK) in wetland soil were 5.46 g·kg-1, 0.60 g·kg-1, 0.28 g·kg-1, 17.06 g·kg-1, 13.75 mg·kg-1, 6.54 mg·kg-1, and 158.56 mg·kg-1, respectively, which showed an increasing trend from the river bank to the shoaly land and were generally higher at the high vegetation coverage areas than at the low vegetation coverage areas. There were significant correlations among SOC, TN, TP, and TK. Soil C/P, C/K, N/P, and N/K showed a consistent trend with soil nutrients, whereas C/N showed the opposite. The coefficients of variation of SOC, TN, AN, N/P, and N/K in the soil exceeded 50.00%, with significant spatial differences. The average value of C/N in wetland soil was 11.882, which was close to the average level of soils in China, whereas the average values of C/P and N/P were 49.119 and 4.516, respectively, both of which were lower than the average level of soils in China, and the N/P of soil was far less than 14, which indicated that N was limited in the soil. The proportion of clay and electrical conductivity combined to explain 61.4% and 43.9% of the variation in the soil nutrients and their ecological stoichiometry, respectively, which were the dominant soil physicochemical properties affecting the soil nutrients and their ecological stoichiometry of Huayuankou Yellow River Floating Bridge Wetland. The research results are helpful to improve our knowledge of nutrients and their influencing factors in the wetland soil of the lower Yellow River and provide an important scientific basis for the ecological restoration and management of the wetland in the lower Yellow River.

18.
Toxicol Sci ; 198(2): 221-232, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38310363

RESUMO

Increasing environmental genotoxic chemicals have been shown to induce epigenetic alterations. However, the interaction between genetics and epigenetics in chemical carcinogenesis is still not fully understood. Here, we constructed an in vitro human lung carcinogenesis model (16HBE-T) by treating human bronchial epithelial cells with a typical significant carcinogen benzo(a)pyrene (BaP). We identified a novel circular RNA, circ0087385, which was overexpressed in 16HBE-T and human lung cancer cell lines, as well as in lung cancer tissues and serum exosomes from lung cancer patients. The upregulated circ0087385 after exposure to BaP promoted DNA damage in the early stage of chemical carcinogenesis and affected the cell cycle, proliferation, and apoptosis of the malignantly transformed cells. Overexpression of circ0087385 enhanced the expression of cytochrome P450 1A1 (CYP1A1), which is crucial for metabolically activating BaP. Interfering with circ0087385 or CYP1A1 reduced the levels of ultimate carcinogen benzo(a)pyrene diol epoxide (BPDE) and BPDE-DNA adducts. Interfering with CYP1A1 partially reversed the DNA damage induced by high expression of circ0087385, as well as decreased the level of BPDE and BPDE-DNA adducts. These findings provide novel insights into the interaction between epigenetics and genetics in chemical carcinogenesis which are crucial for understanding the epigenetic and genetic toxicity of chemicals.


Assuntos
Citocromo P-450 CYP1A1 , Neoplasias Pulmonares , Humanos , Citocromo P-450 CYP1A1/metabolismo , Adutos de DNA , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/toxicidade , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Benzo(a)pireno/toxicidade , Dano ao DNA , Carcinógenos/toxicidade , Carcinogênese/induzido quimicamente , Carcinogênese/genética
19.
Cytokine ; 176: 156532, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38330638

RESUMO

INTRODUCTION: Lung cancer is the leading cause of cancer death worldwide. We aim here to determine the soluble programmed death ligand-1 (sPD-L1) and soluble programmed death ligand-2 (sPD-L2) levels in the plasma of patients with lung cancer and evaluate the clinical significance. METHODS: Plasma samples from 95 lung cancer patients and 55 healthy donors were collected, and the sPD-L1 and sPD-L2 levels were measured using the enzyme-linked immunosorbent assay. The correlations of the plasma sPD-L1 and sPD-L2 levels with clinicopathological status and survival of the patients were analyzed. RESULTS: The sPD-L1 and sPD-L2 levels in plasma of lung cancer patients were 713.8 (240.6-3815) pg/ mL and 3233(1122-13955) pg/ mL, respectively, which were significantly higher than those of the health donors 618.6 (189.1-1149) pg/ mL and 2182 (1133-3471) pg/ mL, and the plasma levels of sPD-L1 are correlated with sPD-L2. ROC results showed that both sPD-L1 and sPD-L2 were potential biomarker for lung cancer, and with a higher accuracy level when combined with CEA. Patients with Higher plasma sPD-L1 level (>713.75 pg/ mL) are associated with poor overall survival in advanced lung cancer patients (197 days vs 643 days). CONCLUSIONS: The combination of sPD-L1 and sPD-L2 could be used as adjunctive diagnostic, High level of plasma sPD-L1 rather than sPD-L2 is associated with poor prognosis in lung cancer patients.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Relevância Clínica , Ligantes
20.
EJNMMI Res ; 14(1): 21, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409511

RESUMO

BACKGROUND: 18F-FDG positron emission tomography (PET) plays a crucial part in the evaluation for pediatric epileptic patients prior to therapy. Short-term scanning holds significant importance, especially for pediatrics epileptic individuals who exhibited involuntary movements. The aim was to evaluate the effects of short acquisition time on image quality and lesion detectability in pediatric epileptic patients using total-body (TB) PET/CT. A total of 25 pediatric patients who underwent TB PET/CT using uEXPLORER scanner with an 18F-FDG administered dose of 3.7 MBq/kg and an acquisition time of 600 s were retrospectively enrolled. Short acquisition times (60 s, 150 and 300 s) were simulated by truncating PET data in list mode to reduce count density. Subjective image quality was scored on a 5-point scale. Regions of interest analysis of suspected epileptogenic zones (EZs), corresponding locations contralateral to EZs, and healthy cerebellar cortex were used to compare the semi-quantitative uptake indices of short-time images and then were compared with 600 s images. The comparison of EZs detectability based on time-dependent PET images was performed. RESULTS: Our study demonstrated that a short acquisition time of 150 s is sufficient to maintain subjective image quality and lesion significance. Statistical analysis revealed no significant difference in subjective PET image quality between imaging at 300 s and 150 s (P > 0.05). The overall impression scores of image quality and lesion conspicuity in G60s were both greater than 3 (overall quality, 3.21 ± 0.46; lesion conspicuity, 4.08 ± 0.74). As acquisition time decreased, the changes of SUVmax and SD in the cerebellar cortex gradually increased (P < 0.01). There was no significant difference in asymmetry index (AI) difference between the groups and the AIs of EZs were > 15% in all groups. In 26 EZs of 25 patients, the lesion detection rate was still 100% when the time was reduced to 60 s. CONCLUSIONS: This study proposed that TB PET/CT acquisition time could be reduced to 60 s with acceptable lesion detectability. Furthermore, it was suggested that a 150 s acquisition time would be sufficient to achieve diagnostic performance and image quality for children with epilepsy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...